1
State Key Laboratory of Oral Diseases, National Center for Clinical Research in Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
2
Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China
3
Department of Stomatology, Inner Mongolia International Mongolian Medical Hospital, China
Corresponding author details:
Kaijuan Wang Rao, B.D.S
State Key Laboratory of Oral Diseases National Center for Clinical Research in Oral Diseases, West China Hospital of Stomatology Sichuan University, USA, Department of Oral Implantology, West China Hospital of Stomatology
Sichuan University 14# Third Section, Renmin Nan Road
China
Copyright:
© 2019 Rao KW, et al.This
is an open-access article distributed
under the terms of the Creative Commons
Attribution 4.0 international License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original author and source are credited.
Purpose: This study was to introduce a novel method of an accurate simple template with cone beam computer tomography (CBCT)-assisted guided templates, and to test the feasibility and accuracy of this method.
Methods: We modified the simple guide template with a titanium bar and 4 small steel balls. According to the CBCT and the position of balls, clinicians corrected the locations of the bar to indicate implant position. To evaluate the deviation between planning, implant and the actual implant, patients were scanned again with the CBCT system and software matching was applied.
Results: The angular and position deflection was little. Deviation at entry point was 0.2 mm and the max error point of the head of implantation was 0.5 mm.
Conclusion: This novel approach achieved accurate positioning, as well as reduced the cost
and the treatment period. By this way, we achieved the integration of “remedy-oriented”
implant design and anatomical structure, bone mass.
Dental implant, Surgical template, Cone beam computer tomography
Dental implants have been the preferred option among traditional prosthodontics
worldwide due to their superior functionality and aesthetics. However, the widespread
use of dental implants has been accompanied by an increase in surgical and prosthetic
complications as a result of inappropriate diagnoses and implant placement [1]. Hence,
there is a demand for the development of new and advanced dental implant techniques.
Because the oral cavity is a relatively restricted space, a high degree of accuracy in
implant placement is critical for a successful prosthesis-guided implant. The use of
implant templates has significantly increased accuracy and has reduced the incidence of
complications [2]. To date, there are two main types of implant templates: digital guide
templates and simple guide templates. The digital guide template is based on computed
tomography data, designed using professional software, and processed by computeraided design and computer-aided manufacturing (CADCAM) or by 3D printing. To ensure
accuracy, there are several requirements for template production: (1) the templates must
be stable and rigid when placed in the correct position, (2) the size of the guide template
should be moderate and easy to operate, (3) the guide template should be transparent
to facilitate adjustment, and (4) the guide template must be able to be disinfected [3,4].
Despite the popularity of the digital guide template in the digital age, most clinicians
still use the simple guide template because it is cost-effective and it takes less time to
produce. But, none of the traditional simple guide templates take anatomy into account.
The positioning and angulation of implants using simple guide templates rely on a
doctor’s experience rather than on cone beam computed tomography (CBCT) evaluation
of the available bone. Hence, the traditional simple guide template has no surgical guiding
significance. In this study, we aimed to develop an improved simple template that guides
surgery based on CBCT data by setting markers for accurate directional positioning of
dental implants without increasing the cost.
Fabrication of the precise and simple cone beam computer tomography (CBCT) template involves the following steps:
To evaluate the accuracy of the precise and simple implant
template guided by CBCT, we measured the deviations between the
pre-operative plans and the post-operative results by comparing preoperative and post-operative CBCT scans.
After taking the mould of the dentition of the patient, a vacuumformed retainer was made. The surfaces of the edentulous arches
were smoothed out with wax, and four small steel balls (1 mm
diameter) were placed around the titanium bar. The position of
the four balls was duplicated in the retainer, and then another
four balls were placed in the corresponding position.
Figure1a: The precise and simple implant template fabrication
process
Buccal lingual deviations can be found clearly and can be
measured by the software, helping the doctor adjust the direction
of titanium bar according to the location of 4 markers.
Figure 1b: The CBCT image of patients wearing the implant
template.
Figure 1c: Finishing the precise and simple guide template
The implant surgery was succeeded. The implant was in a perfect
three-dimensional angle as showed (Figure 2) Deviation at entry
point was 0.2mm. The max error point of the head of implantation
was 0.5 mm.
Figure 2: With the guidance of the precise and simple implant
template, the implant was in a perfect angle from three dimensions
As 3D print surgical templates are becoming increasingly available [5-7], implant surgeries using 3D print surgical templates are becoming routine procedures. A 3D printing machine can manufacture patient-specific guides, which is especially useful when using master sleeves with minimal space between small diameter implants [8]. In addition, improved performances of some metallic materials [9] have popularized the manufacturing of surgical guides using a metal 3D printer. However, it requires considerable time and expense to fabricate an accurate surgical guide template.On the contrary, as a classic tool, the simple guide template cannot adjust for the direction of the implantation and it cannot achieve accurate orientation through CBCT. In our method, for the first time, markers and CBCT are combined with the simple template to achieve precise implantation.
Accuracy is the key for guided implant placement. In a metaanalysis of accuracy and clinical applications of computer-guided template-based implant dentistry, Schneider D [10] found that the
overall mean error was 1.07 mm (95% CI: 0.76–1.22 mm) at the entry
point (eight studies, 321 sites), 1.63 mm (95% CI: 1.26–2 mm) at the
apex (seven studies, 281 sites), and 5.261 (95% CI: 3.94–6.581) for
angulation (eight studies, 321 sites). In our study, we found similar
positional and angular deviations, and we found that reproducible
and stable positioning of the template during the CBCT scan and the
surgery are the most common sources of the deviations. The cost
and the treatment period were reduced as well. Thus, the precise
and simple implant template guided by CBCT that we developed is
feasible and conducive for use in most clinics and hospitals.
This study was supported by National Natural Science Foundation
of China [grant number 81700941].
The Human Research Ethical Committee was registered and
approved in this study.
The author of this paper had obtained written informed consent
for publication in print and electronic form from the patient.
Copyright © 2020 Boffin Access Limited.